If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x=12(0.3+0.5)(15+0.5)*0.02+1*0.5*0.5*0.02-0.5(0.3+0.5)*0.04/0.5^2(0.3+0.5)^2
We move all terms to the left:
x-(12(0.3+0.5)(15+0.5)*0.02+1*0.5*0.5*0.02-0.5(0.3+0.5)*0.04/0.5^2(0.3+0.5)^2)=0
We add all the numbers together, and all the variables
x-(12(0.8)(15.5)*0.02+1*0.5*0.5*0.02-0.5(0.8)*0.04/0.5^2(0.8)^2)=0
We multiply parentheses ..
x-(12()*0.02+1*0.5*0.5*0.02-0.5(0.8)*0.04/0.5^2(0.8)^2)=0
We multiply all the terms by the denominator
x*0.5^2(0.8)^2)-(12()*0.02+1*0.5*0.5*0.02-0.5(0.8)*0.04=0
We add all the numbers together, and all the variables
x*0.5^2(0.8)^2)-(12()*0.02-0.011=0
Wy multiply elements
0x^2-0.011=0
We add all the numbers together, and all the variables
x^2-0.011=0
a = 1; b = 0; c = -0.011;
Δ = b2-4ac
Δ = 02-4·1·(-0.011)
Δ = 0.044
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{0.044}}{2*1}=\frac{0-\sqrt{0.044}}{2} =-\frac{\sqrt{}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{0.044}}{2*1}=\frac{0+\sqrt{0.044}}{2} =\frac{\sqrt{}}{2} $
| 45=15+3x | | 4m-m=19 | | m/25=5 | | 4x+x=7+2x+8 | | 6x^2+18x-13=0 | | m/4=35 | | 22x=32 | | x*0.40=200 | | 5x+3=20-9x | | 2/5(x+2)+1/4=1/2(7-5x) | | 5+2x-4x=11 | | v/24=27 | | 3x+2.5=5.5 | | x+(x+2)=(x+4)/2+36 | | 3x2-7x=-3 | | 1/3x+x=84 | | O.20m+3=8 | | 2(x-2)-3(1-2x)=2 | | 5x-4/2=16+1/7 | | 12=3/7h | | (5x+20)/5=0 | | x/2=6.2 | | (5x+6)-(4×+3)=10 | | 4x(2-9x)(3x-4)=0 | | y/4+16=6 | | 5m−3=4m+5 | | (5x+8)(7x-3)=0 | | y/6+15=9 | | y/3+2=6 | | 35=(f-32)/1.8 | | x-7=5X-25 | | -1-4x=-(1+4x( |